Math 2114 : Lecture 7 : Matrix Inverses

Definition: Let A be a $n \times n$ matrix. If there exists a $n \times n$ matrix B such that

$$AB = I_n \qquad \text{and} \qquad BA = I_n \tag{1}$$

we call the matrix A <u>invertible</u> and the matrix B an <u>inverse</u> of A.

Example 1: Consider the matrices

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$
(2)

Show that $AB = I_n$ and $BA = I_n$. Conclude that A is invertible with inverse B.

Note 1: By symmetry, If the matrix A is invertible with inverse B, then the matrix B is also invertible with inverse A.

Theorem 1 (Poole 3.13): Let A be a $n \times n$ matrix. If B is a $n \times n$ matrix such that either $AB = I_n$ or $BA = I_n$ then $AB = BA = I_n$ and hence A is invertible with inverse B.

Example 2: Consider the matrices

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 2 & 1 \end{bmatrix}$$
(3)

Show that A is invertible with inverse B.

$$AB = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{I}_{3}$$

By theorem 1, $BA = \mathbf{I}_{3}$ and thus A is invertable with inverse B.

Theorem 2 (Poole 3.6): Let A be a $n \times n$ matrix. If A is invertible, then its inverse is unique.

Note 2: If A is invertible, we denote its unique inverse A^{-1} . $A \leftarrow D_0$ not white $A \leftarrow U_0$

Note 3: If A is invertible, then A^{-1} is invertible with inverse $(A^{-1})^{-1} = A$ by symmetry. This note is theorem 3.9 part (a) in Poole.

Proof: Suppose
$$\bigcirc AB = T_n$$
 and $BA = T_n$
 $\textcircled{O}AC = T_n$ and $\bigcirc A = T_n$
 $\textcircled{O}AC = T_n$
 $\textcircled{O}AC = T_n$ and $\bigcirc A = T_n$
 $\textcircled{O}AC = T_n$
 $\textcircled{O}AC = T_n$ and $\bigcirc (\frown A = T_n)$
 $\textcircled{O}AC = T_n$
 $\textcircled{O}AC = T_n$ and $\bigcirc (\frown A = T_n)$
 $\textcircled{O}AC = T_n$
 $\textcircled{O}AC =$